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Formulating quantum mechanics from an equivalence principle
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—  Schrodinger eq.
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Motivation General Relativity: Covariance & Equivalence Principle
— fundamental geometrical principle

Quantum Mechanics:  No Such Principle

Axiomatic formulation ... P ~ |W|?

However Quantum + Gravity Theory
not known

Main effort: quantize GR; quantize space-time: e.g. superstring theory

The main successes of string theory:

1) Viable perturbative approach to quantum gravity

2) Unification of gravity, gauge & matter structures
1.e. construction of phenomenologically realistic models
—  relevant for experimental observation

State of the art:  MSSM from string theory
(Cleaver,AEF, Nanopoulos, PLB 455 (1999) 135)




1995: String duality

11D - supergravity

SO(32) heterotic
Type 1IB

mxEgheterotic  Better understanding of string thec

Type |

ype lIA

However no rigorous formulation of quantum gravity

Our approach formulate quantum mechanics from

a principle of covariance and equivalence

In retrospect: the fundamental lesson from string dualities

Disconnected classically — > connected quantum mechanically

promote to a level of a fundamental principle



Start From:

2
D CSHJE: (%SQO) + Vig — E = 0
define W(q) =V (q) — E

Equivalence Postulate:

For all W(q) exist q — q=q(q)

~

such that Wiq) — W(q) =

— Modification of the CSHJE

2
Qin (%io) + Vig — E + Q@ = 0

will show Q(q) — quantum potential

—  Schrodinger equation



Generalization of HJ theory

. OH . 0H . OH . OH
H(q,p) — H(§,p) = H(q,p) + 5 =0 = CSHIE

The solution is the Classical Hamilton—Jacobi Equation

Formulate a similar question

Consider the transformations on

95, N
(g, Solq), p = aq) (g, So(q), p = aij)

Such that N
Wi — Wi =0
exist for all W (q)
— QHJE

——  Schrodinger equation



2nd

Legendre duality & order diff. egs.

intimate connection between p — ¢ duality & the equivalence postulate

Hamilton's E ) oH ' _0H
amilton's S. - = 3 -
invariant under p — —(q

breaks down once V' (q) is specified e.g. %pQ + V(g — E =0

Aim Formulation with manifest p — ¢ duality

recall p = %—‘3 define ¢q = %—g

oT 0S5

S =p— — T T =qg— — S5

Stationary Case:  S(q,t) = Splq) — Et , T(p,t) = Ty(p) + Et

Compute dS and dI' = %—f = —%—?.
01 0S5

So = p—r — T , Ty =g — Sp
Op dq



Invariant under Mobius transformations:

Aqg+ B
Cq+ D’

p — py = p (Cq+D)?’p , p=AD-BC

¢ — ¢ =

Ty — T{(®") = Tolp) + p HACG +2BCq+ BD)p.

Transformations: q— q" =wv(q) defined by S7(q¢") = S0(q)

( Sp scalar function under v )

ondorder diff. eq. with the Legendre transformation:

0° WP\
(&5%+U(SO)>(\/Z_?> = (

1 q/// 3 q// 2
where USo) =3la. S 73 (—,

Associate a




We can derive this eq. in several ways

rewritten as

or

053

05y 0q

ZeY 99 1
gq = paSQ
9 9 dq , g _
95, = o508 Pz = Y
0cayp  Og /P
0 _ 0 -
N U(SO>
o1y
Solq) = \/_ Py 7 — T



manifest p<«< q — Sgp < 1y duality with

0D\ 0
6—58 + U(So)) ( \/]_?> =0 (5’T02 + V(T0)> (

Involutive Legendre transformation < duality

Jq 4 = op
ik 095

— Y _T Th = g220 _
pap 0 0 = ¢ 9 S0



Self—dual states
States with

pqg = ¥ = const

are simultaneous solutions of the two pictures with

So = — 1y + const
So(q) = vInygeq To(p) = v Inypp
S0 + Ty = pg = v
where YoYpY = e
self-dual states
+h
will show that wsd—wl=0  d=""

21



Schwarzian derivative  {h(x),z(y)} = (%)2 {h(x),y} — (%)2 {z,y}.

Ay + B
if T = CziD then {z,y} =0
1 1 Ag+ B
U(S0) = 51a:57) = 5 (Jq+D’SO}

Invariant under Mobius transformations

For general ¢"' =wv(q) = U(Sy(q")) # U(So(q))

But Sy(q") = Sp(q) (= p transforms as g—q under v(q))

5)2
DS

= connect different potentials by coordinate transformations

By construction ( >+ U(Sf{)) ¢“(Sy) =0 is covariant

= Equivalence Postulate: Wi(q) =V(q) — E  connected
In particular W —wl =0



The equivalence postulate is not consistent with classical mechanics

Consider the CSHJE ! (

2m

05" (¢"
0q?

>>2 + W) = 0

L (04" 7 (95(@)\
from S;(q") = Sp(q) we have 5 ( 6’(1) (— + W q") =0

U\ —2
Covariance implies Wi(q) — WY4q") = <8i> W(q)

—>  W/(q) should transform as a quadratic differential
Starting from the state WV(¢") = 0 we have
0.0 ooy (247N o0 0
WHq") = Wig') = i W5(q") =0
WY is a fixed point in the space of all possible TV,

and the equivalence postulate cannot be implemented



— Modify the CHJE

Requirements 1) Covariance

2) all W € H are connected by ¢% — qb
3) lim — CHJE

. DSy~
Modification 27171 ( 8q0) +Wiq)+Q(q) =0
dg¥\
consistency  1W*(q") + @) = (%) (W) + Qo)

W+ € Q — space of functions transforming as quadratic differentials
and WeQ & @ ¢9Q

Ag"\
The most general transformations  W%(¢%) = (L> Wi(q)+ (¢%: q"),

with ¢ — ¢¥ = v(¢?) «— Sg(q“ = So(qa)



For a=0 wehave WY¢") = 0
and  W'(¢") = (¢";¢")

All TV —states are identified with the inhomogeneous term |
consider

wh(g")
W% (q") W(q")

We obtain the cocycle condition

2
dq" b b
a. oy _ | Y91 a. _/.C.
(" q%) <an> {(q q') —(q%4)|,
= Theorem (q%; ¢°) invariant under Mobius transformations v(q%)

Theorem (¢%q¢°)  ~ {q"; ¢}
The cocycle condition generalizes to higher dimensions with

respect to the Euclidean and Minkowski metrics and is invariant
under D—dimensional Mobius or conformal transformations




A natural way to represent a quadratic differential
1 (0S)\* B2
o — = ()
5 ( aq> + o~ {fah —{g.a})
Difference of Schwarzian derivatives is a quadratic differential
2 125
Identity (?) . <{e 7 at — {5, q}>
q

1250
With f=elb qg = S0 up to Mobius transformations

Make the following identifications

52 125,
Wi(q) = —e q}=V(q) — E
52
Q(q) = {So q}

which follows from the limit élmo_m {f,qt —1{9,9}) =V(q) — E



The Modified Hamilton—Jacobi Equation becomes

2 2
: <aso> +V(C]>—E+ﬁ {S0.q} =0

2m \ O0q 4m
in the limit 5 — 0 we get back the CSHJE and Sgl = ﬁlimo S0
The QSHJE gives back the Schrodinger Eq.
3% 25
We identified S ) N
e identifie Viq) I e 7 ,q}
V(g) — E s a potential of the 2"—order diff. Eq.
52 82
1 i i
The general solution U(q) = (Ae+ﬁ50 + Be_ﬁSO)
/
SO
i25 . 12
and ot R ZeijJ—rzé w :%

{ = 01 + 149 (1 # 0 a € R Y1, Yo € R



The equivalence transformation
W(g) = V(g — E — W(@ =0

always exists

We have to find qg — ¢ take q = %
62 82 82 ~
th — — b Vig) = B
B ( o T V@ @) =0 = ¥ =0

1
- d 2
where i = (%) v



There is a subtle point if Sy =Aq+ B +«—  Free Particle

In this case Sy — T{ duality breaks down

This point correspond to V(q) — F =0

Sg = const = A fixed point in Q

1 [(95)\°
Classically 5 ( 8()) =0 = Sy = const
m q

1 (05 ’ h? B



which has the solutions
7
So = :I:§ﬁ Ingq
that also follows from
iQSO

Vig)—E~{e 7 ¢t =0

so for V(q) — E =0

we set Sog = const & H
Sy = :tglnq c H

For the case W (q) = —E # 0 instead of Sy = +v2mkEq

(

we have the solutions So=—=1In

we have that Sy # Ag + B always !



Allows: Equivalence postulate for all states

Full Sg — 1( duality
with the self-dual point v = :I:%h

The trivializing coordinate is solution of

wl QiSO
§ = — = ¢Ff
9
62 21.S
—% € 79} — V(Q) - b

or



Tunneling:

The fundamental equation in our approach

1 /0S)\° 32
e (G2) V@ - B (Shah =0

Quantum Hamilton—Jacobi equation

which is equivalent to

h* [ %%
W) =Vio - E=—y-{e 7]
whose solution is
28
e 50 — ﬂ
(05

where 1)1 and 1 are the linearly independent solutions
of the corresponding Schrodinger equation

= Schrodinger equation — Linearization of the QHJE



More Generally:

21.9(y
Due to Mobius invariance of {e p ,q}
We h g _Awt D th w=""1 and AD—BC + 0
e have e P = with w = — an —
Cw+ D 9
We can set
e%go _ emw + Zg
w — il
a € R { = 01 + 1409 ¢1 # 0 and we get
_0S A+ 1

p = = S~
o 2|1hg — ilihy |2 0|



Classically

where

Q.M.

we found that

p = +2mE-V)

= p & R for ¢ € Q

@ ={¢g € R[V(g—-F > 0]

p = +2m(E -V — Q)

_ &
6|
= p e R Vg€ R

P e = £ 1

= no forbidden regions

except for the infinitely deep potential well



Energy quantization:
Probability: = (I, ') continuous ; ¥ € L*(R)
—> quantization, bound states

What are the conditions on the trivializing transformations?

S W
(05 (0
we have fw.qh - —%(V(q)—E)

= w # const ; w € C*R) and w" differentiable on R

In addition from the properties of {,} — {w ¢ = ¢{w,q}

= w # const ; w € CXR) and w" differentiable on R
where R = R U {0}

w(+o00), for w(—o0) # =+ oo,

—w(+00), for w(—o0) = £ o0

y

= w(—00) = «

\



—

Equivalence postulate = continuity of (1), ) and (wD/,wl)

Theorem:

)
P2 >0 for q < q

\P_%>O for q > q4+
then the ratio w = wD/zb is continuous on R iff

the corresponding Schrodinger equation admits

an L?(R) solution
1) ¢ € LAR) = o7 ¢ LYR)
w = Avp + BY = lim = é
Cyp + Dy q—+00 C
= w(—00) = w(+o0)




)
- 0 ¢ £ L
Potential Well: Vig) = X
Vo ld > L
_ \PmE _ /2m(Vy—FE)
k = ;i” K = .
q < L \If% = coskq \If% = sin K
g > L U3 = ol s = o

The solution at ¢ < L is fixed by parity

four possibilities  (1,1) (2,1) / (1,2) (2,2)
take (1,1): W, U’ continuous = Kk tankl = K
Use P = v fq%dx U2(x) + d W

2

cos(2kL) — e 2K(a+L) ¢ <« [
1
N _ .
W T2k L) { sin(2kL)tan(kq) gl < L
e2f(a=L) _ cos(2kL) q > L

\



limi? = +00 —> Fyp(k tankL = K) are admissible solutions
q—>
take (1,2) : W, U’ continuous = Kk tan(kl) = — K
(
cos(2kL) — e~ 2Ea+L) 4 <« [
1
= w= ' <
w Tesin(2k )] § sin(2kL)tan(kq) gl < L
e2K(a—L) _ cog(2k L) q > L
\
P 1
lim — = F —-cot(2kL) = w(—o0) # w(+00)
qg—+ P k

(k= *(cot 2kL) = 0 is not compatible with ktan(kL) = —K)

=  Enp(k tankL = — K) are not admissible solutions



We can understand the

U e L*(R)
condition
existence of bound states
with quantized energy eigenvalues

as a consequence of the

postulated equivalence principle.



Generalizations:

Cocycle condition — D-dimensional E&M metrics
invariant under D—dimensional
Mobilis (conformal) trans.

Quadratic differential:

aS( .
2(VSy) - (VSy) = DU AR (ZVR VSO+ASO>,

reeS  Rr ¢ R
or
% (Re™)  9°R OR - 0S
2 o 2
or

D?(Re™)  9°R «a
2 _
a”(0S —eA)- (0S5 —eA) = raS TR W

DH = Ot — qe A

9 (RQ(as - eA)) |



Further highlights

1. Planck length from the equivalence postulate

(AEF, Marco Matone, Phys. Lett. B445 (1999) 77)

9H =0 = =1 ¥h-g
= duality implies a length scale
2. Equivalence classes of the wave—function
V() = — (Ae—%50<5> + Be%so@)

v/ S0(0)
6 ={a,l} — 5'{d, 6"}

Vp{d'} = Vp{d}
but p = %—%) changes
however # Bohm!!!
L. p#mq |
2. Bohm: W = Rer™
U for bound states = Sy = 0
= classical limit in Bohm's approach 7!

we have Sy # Aq + B Always




conclusions :

The equivalence postulate = QHJE = h # 0

p-q duality & Equivalence Postulate = Sp # Aq + B Always

Equivalence Postulate =
U(q) = —= (Ae+ B0 4+ Be—%SO)
S
Tunnel effect

(-

Energy quantization & ¥ € L*(R)

Generalizes to Higher Dimensions in E & M metrics
Outlook

T'—duality as phase—space duality in compact space

Generalize to curved space; generalised geometry
Develop EP approach to quantum gravity

plus fundamental issues in QG



